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Abstract— A study of the effects played by tangential edge constraints on the vibrational behavior of
single/multilayered doubly-curved shallow panels subjected to complex thermomechanical loading
systems acting in the pre/postbuckling regimes is presented. In addition, effects related to the
transverse shear and initial geometric imperfections are incorporated and their influence is high-
lighted. Numerical illustrations based on a higher-order theory underline the strong influence played
by the above mentioned effects, in general, and by tangential-edge restrains on the alleviation of the
intensity of the snap-through buckling, its delay and suppression, in particular. 1997 Elsevier

Science Ltd.
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NOMENCLATURE

Covariant and contravariant components of the metric tensor of the undeformed
mid-surface ¢

Stiffness quantities (see Appendix)

Curvature tensor of the undeformed mid-surface

Principal curvatures of ¢

Flexural stiffness (see Appendix)

Average tangential stiffness quantities in the direction normal to edge x = 0, /, and
x, = 0, I, respectively

Tangential and transverse shear 3-D strain components

Young’s modulus, tangential and transversal to the isotropy surface, respectively
Airy’s potential function

Tangential and transverse shear modulus

Thickness of shell/plate

Mean curvature of o

Transverse shear correction factor

Edge loads normal to the edges x, = 0, [, and x, = 0, /,, respectively, positive in
compression

Length and width of the flat/curved panel

Dimensionless compressive edge loads (= (N,,, Np)/i/np)

Tensors of stress resultants, stress couples and transverse shear stress resultant, respec-
tively

Mass per unit area of the laminated plate/shell

Lateral pressure field, its amplitude in the mode (m, #), and the dimensionless ampli-
tude in the mode (1, 1), respectively

Second Piola—Kirchhoff stress tensor

Uniform and non-uniform through thickness temperature distributions

Amplitudes in the mode (#2, n) of % and lT respectively

Notations used in numerical illustra}ions to denote the amplitudes in the mode (1, 1)
of temperature distributions T and T, respectively

The temperature distributions over the external and internal bounding surfaces of the
plate/shell, respectively

The temperature amplitudes in mode (1.1) of temperature distribution over the
external and internal shell/plate surfaces

Time

Tangential and transversal displacement quantities of the mid-surface of plate/shell
The amplitudes in the mode (m, n) of v;

Initial geometric imperfection
The amplitude in the mode (m, n) of ‘z’u
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Curvilinear system of normal coordinates

J & Thermal compliance coefficients in the tangential and transversal directions to the
1sotropy surface, respectively

Ay, Ao Tangential stiffness quantities in the direction normal to the edges x, =0, /, and
x, = 0, I, respectively

A U mrn/l,, nmil,

Al Stretching and bending thermal stiffness quantities of plate,shell, respectively

4y Tracer identifying the contribution brought by transverse normal stress

é Tracer identifying the contribution brought by higher-order terms

H
8 = wy /h) o( = wy /h) The dimensionless amplitudes of the transverse deflection and initial geometric imper-
fection, respectively

A Two-dimensional Laplace operator in a curvilinear coordinate system (= (')|3)
A, The end-shortening in the x, direction
v, v Poisson’s ratios tangential and transversal to the isotropy surface
Eapr Kags Caps €3 ANd A,z 2-D strain measures

Function associated with transverse shear
QF Partial differentiation with respect to coordinates x'
(e Ol Covariant differentiation with respect to the metric tensor g;, and a,;, respectively
() Time derivative.

1. INTRODUCTION

The dynamic response and vibration behavior of mechanically and thermally loaded flat
and curved panels is a problem of a special relevance in the design and development of
supersonic/hypersonic vehicles as well as of future reusable space transportation systems.

During their missions, advanced flight vehicles have to withstand severe aerodynamic,
aeroacoustic and thermomechanical loads. The temperatures are likely to range from the
extreme lows of cryogenic fuels and radiation to space, to the highs associated with
aerodynamic heating, heat from propulsion unit and radiation from the sun.

All these factors affect dramatically the dynamic response characteristics, aeroelastic
behavior and fatigue life of these structures. In order to evaluate properly their dynamic
performances, a better understanding of the effects played by non-uniform temperature
fields and mechanical loading upon the vibrational behavior of aeronautical structures is
needed.

Major portions of aircraft and spacecraft structures consist of plates and shells. In
order to resist such adverse conditions, their structure is likely to be constructed of advanced
composite materials.

In two recent papers (Librescu er a/., 1993b; 1994) the effects of transverse shear
featured by the advanced composite materials and of initial geometric imperfections on
natural frequencies of flat and curved panels subjected to thermomechanical load systems
have been investigated. In these studies the panels have been considered simply-supported
and it was assumed that the tangential motion in the direction normal to the unloaded
edges is either unrestrained (free movable edges) or fully restrained (immovable edges).
However, in practical situations, the tangential motion of the unloaded edges is partially
restrained only.

As it was shown quite recently (Librescu et al., 1994b, 1995), in the static case, the
degree of the tangential edge restraint can play a great role in improving the load carrying
capacity of structures by preventing the loss of their stability through a snap-through or
via a bifurcational buckling with unstable postbuckling response. Moreover, it can render
an imperfection-sensitive panel, insensitive to imperfection. Needless to say, the degree of
the tangential edge restraint can play also an opposite effect upon the postbuckling behavior
of mechanically and thermally loaded panels.

Related to the wvibrational behavior of flat and curved panels subjected to ther-
momechanical loadings, the degree of the tangential restraint of panel edges is likely to
play a significant influence, as well, upon the associated frequency-load interaction behavior.
As a result, the present study has as one of i1ts purposes the elucidation of the influence
played by the tangential edge constraints on the natural frequencies of geometrically perfect
and imperfect flat and curved panels subjected to complex thermal and mechanical loading
conditions.
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To the end of studying this problem and for rendering the paper reasonably self-
contained the basic steps yielding the associated governing equation system will be
presented. For more details the reader is referred to the papers by Librescu ez al. (1993a,b,c).
The analysis is carried out within a higher order shell theory developed within the Lag-
rangian description and in the spirit of the von Karman’s small strain and moderately small
rotation concept.

In many instances, the numerical illustrations are displayed in parallel with their static
counterpart. This enables one to get a better understanding on the influence played by the
degree of tangential edge constraints, the non-uniform temperature and pressure fields,
stress-free initial geometric imperfections, shell curvature, and transverse shear upon fre-
quency-load interaction behavior.

2. GEOMETRICAL PRELIMINARIES. ASSUMPTIONS

Consider the case of doubly-curved shallow panels of uniform thickness 4. Assume
that the structure is symmetrically laminated of 2m+1 (m = 1,2,...) elastic layers whose
materials exhibit transversely isotropic thermo-elastic properties, the surface of isotropy
being paralle]l at each point to the reference surface of the panel. It is supposed that the
layers are in perfect bond so that no slip between the contiguous layers may occur.

The points of the 3-D space of the panel are referred to a set of curvilinear system of
normal coordinates, x', where x* (o« = 1,2) and x* denote the tangential and transverse
coordinate to the mid-surface, respectively, where the reference surface ¢ (coinciding with
the mid-surface of the mid-layer) is defined by x* = 0.

In the forthcoming developments, the conditions pertinent to the theory of shallow
shells (SST) are invoked. Denoting by Z( = Z(x")) the amount of deviation of the shell
reference surface from its projection to a plane P, it is assumed that this quantity is small
when compared with a maximum length of an edge of the shell or with the minimum radius
of curvature of ¢. Postulating that max(0Z/0x”) « 1, it results (see, e.g., Green and Zerna,
1968) that the metric tensors associated with the system of coordinates on the plane ¢ and
with its projection on P are the same and, in addition, that the curvature tensor of the
reference surface behaves as a constant in the differentiation operation.

Having in view the intricacy of the resulting equations, in the following developments
the tensorial notation will be used. In addition to their compactness, the invariance to any
change of the reference frame constitutes another feature whose advantages have not to be
advocated.

In the forthcoming developments, unless stated otherwise, the Einsteinian summation
convention for the repeated indices is implied, where the Latin indices range from 1 to 3
while the Greek indices range from 1 to 2.

3. THERMOELASTIC CONSTITUTIVE EQUATIONS

As in the 3-D elasticity theory, it can be stated that the 3-D thermoelasticity theory
implying small strains and large displacement gradients may be described by linear consti-
tutive equations, correlating second Piola-Kirchhoff stress and Lagrangian strain tensor
components. As a result, in the absence of stresses in the undeformed body, the stress—
strain-temperature relationship for an elastically linear 3-D anisotropic body is given by
the Duhamel-Neumann form of Hooke’s law. Under a convenient form they can be
expressed as (Librescu, 1975):

%133

5 = EXPore 45, s34 AT,

E3333
§=2E",;. (la,b)

In these equations
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Emﬂ33E33wp . aff33
—ET, 1 = jf }.33, (2a,b)

Exbor — pabop _

denote the reduced elastic and thermal compliance coefficients, respectively (assumed to be
independent of temperature), T( = T(x, x*)) denotes the temperature rise from a reference
temperature 7, (at which the body does not undergo thermal expansions), while sV and e;
stand for the second Piola—Kirchhoff stress and the Lagrangian strain tensors, respectively,
4, being a tracing quantity identifying the contribution of s** in the constitutive equations.
For transversely-isotropic materials, the thermo-elastic moduli are expressed by

~ E
Eaﬂwp — [ (azuaﬁp _+_aaﬁ 1p) _+_ vampazﬂ:l

I+v
E2$33 v E

x3w3 — 7AW, — aff

E G'a”; E3333 EQ _v)a ’
= g = Aot a?, (3a—d)

where
EvV X

:,d——l—E———,(l_v)7 (3C)

Ineqns (3), E, v, G( = E/2(1 +v)), Aand E', v, G’ and A" denote Young’s modulus, Poisson’s
ratio, shear modulus and the thermal compliance coefficient characterizing the material
behavior tangent to the surface of isotropy and across this surface, respectively.

Consideration of this type of anisotropy is motivated by the following factors: (a) it
enables one to emphasize in a more comprehensive way the effect played by transverse
shear flexibility, (b) the materials exhibiting this kind of anisotropy (e.g., the pyrolitic
graphite and the new products of alloys of pyrolitic graphite) play a great role in the
thermal protection of aerospace vehicles and of engine nozzles (e.g., see (Garber, 1963 and
Woods, 1976), and (c) such transversely-isotropic materials are used to model the core-
layer of sandwich constructions.

Within the framework of this study a linear variation of the thermal field across the
wall thickness is postulated, namely

0 1
T(xfx’x3) = T(x(u) +x3 T(x(u)’

where
o 1 | 1 c
I(x) =5(Ti+T): T(x*)=(T,=T). ()

define the membrane and the thickness-wise temperatures, respectively.

In eqns (4), T(x“)( = T(x“, x; = h/2)) and T.(x*)( = T(x”, x5 = —h/2)) are the tem-
perature dlStI‘lbUthl’lS over the boundm% surfaces of the shell. From eqns (4), one obtains
the relationships hT 2(T T,) and hT = 2(T,— T) to be used in computations, in the
cases when T, and T, are the temperatures whose amplitudes are hold fixed, respectively.
T and T appear explicitly in the 2-D form of the constitutive equations and later, in the
governing equations.
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4. KINEMATIC EQUATIONS

Within the Lagrangian description and in the spirit of small strains and moderately
small rotation approximation, the 3-D strain—displacement relationship is

)] [(]
2e,, = Vi + Vi +Va Vi + Vi, Vi, + Vi Vs (5)

where V(x* x°, ) denote the displacement components while ?@(x’, X = 33(x’) denotes
the initial geometric imperfection in the unstressed configuration. By convention, the
transverse deflection is measured from the imperfect surface and is considered positive in
the inward direction.

Assuming a parabolic variation for the shifted tangential displacement components
through the entire thickness of the structure (see Reddy and Liu, 1987, Librescu and Stein,
1991), enforcing the conditions expressing the absence of shear tractions on the shell
bounding surfaces, and using in eqn (5) the relationships between the covariant derivatives
in the 3-D space with the ones in the 2-D (see Naghdi, 1963, and Librescu, 1975) in the
light of the assumptions proper to the SST, one derive the nonvanishing components of the
strain tensor as

3. PRANEIES
€ = Eupt X Koy +(X7) (o,

e+ (XA (6a,b)

e:z}
In eqn (6) the various 2-D strain measures are defined as

0 0
28,5 = Uajp T Upyx _217114'3 Tl gt UalapgtUsalag,

2Kx/f = ltbaz\/i + l'///f EE)

. .4
25:[{ = —0y %(21”3\1/1+‘//:/i+d/m1)-,

2813 = 'J/az + vl:x + bsl",n

4
(W1+L~3.x+b};l‘p)' (7a_e)

2/:.13 = _(5H 3h2

Herein 4, is a tracer identifying the higher order terms. Consequently, when 8, = 0, eqns
(6) and (7) reduce to their first order transverse shear deformation (FSDT) counterpart.
Furthermore, upon considering y, — — (v;,+4t,), the strain measures, eqns (7), reduce
to the ones associated with the classical shell theory (CLT).

In the light of the results associated with the SST, in the previous (and forthcoming)
equations the covariant differentiation can be performed with respect to the metric at P. In
this case, since the Riemann-Christoffel tensor is identically zero, the covariant differ-
entiation is interchangable. In the previously displayed equations partial differentiation is
denoted by a comma, (), = ¢( )/dx, while ()|, and ()|;stand for the covariant differentiation
with respect to the space and surface metrics, respectively.

5. EQUATIONS OF MOTION

The geometrical eqns (6) and (7) contain five unknown displacement quantities, namely
v (x¥, 1), va(x?, £) and Y,(x”, 1). In order to obtain the governing equations in terms of these
unknown functions, five 2-D equations of motion are needed.

They are obtained by taking various moments of the equations of motion of the 3-D
non-linear elasticity theory
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[(8+ Vi + V)], = pV. @®)

Employment in eqn (8) of the approximation proper to the SST (implying also the discard
of tangential and rotatory inertia terms), followed by consideration of moments of order
zero and one of the resulting equations associated with / = 1, 2 and of the moment of order
zero of the same equations for / = 3, results in the 2-D equations of motion:

L), = 0. M*,—0" =0.

0 R
Lxﬁ(l'}./f +r 3_/f)11 + b,anw +0”

L ps—mety = 0. (9a—)

In these equations p; denotes the transversal load. L™, M* and Q™ denote the membrane,
stress couples and transverse shear stress resultants. respectively, while m, denotes the
reduced mass.

6. NONLINEAR BOUNDARY-VALUE PROBLEM

For the problem to be studied in the present work, a most convenient representation
of the governing equations is that representing the refined counterpart of the classical von
Karman-Mushtari-Marguerre large deflection shell theory.

To the end of obtaining the governing system in such a form. the procedure developed
in a number of previous papers (e.g., Librescu and Chang, 1992, 1993) will be followed. In
this spirit, use is made of the Airy stress function F(x". t). resulting in the identical fulfilment
of eqn (9a). Hence. the compatibility equation for the membrane strains is included as a
primary field equation of the nonlinear boundary-value problem. It reads:

0 o

T3 . . [ . I, . . —
S e Tl T30 Uy T Ca i Us s byt ) = 0. (10)

This equation together with the remaining shell out-of-plane force equilibrium equation
and the two moment equilibrium equations, eqns (9¢) and (9b), respectively, are basic in
the establishment of the governing equations.

Further. as a first step, the inverted form of the pertinent constitutive equation

3

4 0 0
L = ba*a"e,,+ cale) + o Sda’ (o) s, +2v5 1 s, ) + Ad” T, (11)
N

is needed, which results in

~ - 0 -0
o = ba,,ap, L™+ ¢a L+ 0 ,d(vs ] va |, + 204,031 Y aus + Aay T (12)

7]

The expressions of the coefficients b, ¢, d. A and of their tilded counterparts can be found
in Librescu and Stein (1991), Librescu and Souza (1991b), and Librescu and Chang (1993a).

Furthermore, the bending stress couples and transverse shear stress resultants are
expressed in terms of the rotations ¥, and the transverse displacement z,. Substitution of
these special constitutive equations into the three remaining shell equations of motions,
eqns (9b, ¢). and into the compatibility equation. eqn (10), results in four coupled partial
differential equations in terms of the stress function F, the transverse displacement r;, and
the two rotations y,. By expressing further y, in terms of a potential function I'(x,,, 7) and
of the transverse displacement v, (Librescu and Stein. 1991, Librescu and Chang, 1992) the
governing equation system can be cast in the form:
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0
DAAr, — ¢ {[H/;FW + (Capp + l'm/;)FW

B+C M 0
s _O-'IE Aoy Fy 4 Flop (s + U 30)
B+C M B+C /R M
- |:173 - ("S — 0y S> Ap;}%—m(, [1"';‘ - ( 5 +0, (m - S)) Az’:g}
0
_NAT = 0.
~ [ )
(h+6) AAF‘F%(AF;AF} —Us ;rl',:i'/,)H‘(Al"xAlf'x_;f.?[Zl'; ) +2HAv,
. —~ {} 8 [¥]
— B |5 + 20 AT el s s 0 AP es |, A A e ], 20 e )
+AAT = 0.
C
l——gAr:(J. (13a—¢)

In the preceding equations A( =()|3%) denotes the 2-D Laplace operator, ¢** is the 2-D
permutation tensor, // denotes the mean curvature of 6(2H = b,ya™’ = 1/R 4+ 1/R,, R, and
R, being the principal radii of curvature). In addition 4. B, C, D, A, Il and 4, ¢ denote
stiffness quantities while M, S and d denote transverse shear stiffness quantities. Their
expressions are displayed in the Appendix. Under this form, the equations include the
effects of heterogeneity. transverse shear, transverse normal stress, geometric nonlinearities,
initial geometric imperfections, shell-curvature, as well as those of non-uniform temperature
and pressure fields.

The linear eqn (13c) (of Helmholtz-type) defines the boundary layer effect. Its solution
1s characterized by a rapid decay when proceeding from the edges towards the interior of
the shell. Although ¢, and F appear totally uncoupled with I in the governing equations.
the boundary-value problem remains coupled through the five boundary conditions at each
edge of the shell.

For the case of simply supported boundary conditions considered in the present paper
(see also Librescu and Stein, 1991), the potential function I" can be rendered decoupled in
the boundary conditions to result as ¢T'/¢n = 0 at a boundary whose outward normal to
the contour is n = ne,. Since the governing equation for I' is homogeneous, the solution of
eqn (13c¢). in conjunction with the associated BC is identically zero, and as such, it can be
exactly discarded.

7. POSTBUCKLING OF PANELS WITH TANGENTIAL EDGE CONSTRAINTS

In the present study simply supported boundary conditions with varying degrees of
tangential edge restraint are considered. The restraint acts in the direction of the outward
normal to the panel edge in the surface tangent to the panel at each point of its edges. For
these boundary conditions, the transverse displacement at each edge, the bending stress
resultant acting about the axis parallel to each edge, and the rotation about the axis normal
to each edge (in the tangent plane) are all zero-valued. The degree of tangential edge
restraint considered herein is bounded by the cases in which the motion in direction normal
to the unloaded edges in the plane tangent to the surface at the panel edges are either
unrestrained or completely restrained. For these two cases. the panel edges are referred to
herein as movable and immovable, respectively. All intermediate cases are referred to herein
as partially movable edges and include elastically restrained edge constraints.

For a movable edge. zero-valued tangential stress resultants are specified at the edge.
In contrast, for an immovable edge. the components of the motion that are normal and
parallel to the edge in the plane tangent to the surface at the panel edges are restrained and
unrestrained, respectively. For this case, the tangential shear stress resultant on the edge is
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specified as zero-valued, and the normal displacement to the unloaded edge in the tangent
plane is specified as zero-valued in an average sense. To render this displacement zero-
valued in an average sense (see Librescu, 1965. 1975), the normal displacement in the
tangent plane is obtained in terms of the transverse displacement and Airy’s stress function
by using the corresponding strain—displacement relation and constitutive equations and
then by integrating the resulting expression over the mid-area of the shell. Setting the
resulting equation equal to zero, yields the fictitious stress resultant normal to the edge in
the plane tangent to the surface at the edge that makes the corresponding normal dis-
placement zero-valued in an average sense.

The analytical procedure used for panels of rectangular (/, x/,) projection, with
opposite edges that are partially movable is similar to that previously described for panels
with immovable edges. In particular, the average end-shortenings A, and A, between edges
xy=0and x, =/ and x, =0 and x, = /,, respectively. are related to the corresponding
average compressive edge loads &, and N.. by

Aey=—N. Aci=—Nss (14a.b)

in the directions normal to the edges v, = 0./, and x. = 0. /., respectively. From eqns (14)
it is apparent that corresponding to the case of immovable edges x, = 0./, and x, =0, /;,
we have A; = 0and A, = 0, implying ¢, = = and ¢, = =, whereas for freely movable edges,
implying ¢, = 0 and ¢, = 0, it results that ¥, = 0 and N,. = 0. For most practical situations
implying intermediate degrees of tangential edge flexibilities, 0 < ¢, < o¢ and 0 < ¢, < 0.
The expressions of the average end-shortening displacements as given by Librescu (1965,
1975) are

U d.\‘: d'\.l .

rLp
LA, = — ' radysdy, (15a.b)
Jo

where ¢, and r, are the displacements parallel to the x, and x, directions, respectively. The
average compressive edge loads (considered positive in compression) are given by

|
=Ny = [ F::|\,,—n./ dx..
Ji

I’y

1 [
— N, :TJ Fll‘\: 0.4 dx,. (léa,b)
Jo

where the Airy’s function Fis represented as
Flxpoxa ) = Filx,.x..0) _; [(-\’:):Nl il A )3Nz:]~ (17

F\(x,,. ) being a particular solution of eqn (13b).

Equations (15) are used in conjunction with eqns (14), (7a) to obtain the fictitious
edges loads N, and N,, that yield the desired normal edge constraint. In order to capture
in a more convenient way the whole range of edge constraints, following the procedure
presented in Librescu, 1965, the stiffness quantities ¢, and ¢, are redefined in terms of 4,
and 4, as (Librescu et al.. 1994b, 1993)
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(b+ e,

_ NUERIS
e Brae,

/. = .
L+ {h+ &,

/o =

(18a.b)

where 4, and /. are the newly defined tangential stiffness edge parameters while (h+¢) is
the panel tangential stiffness quantity defined in Librescu and Stein (1991). From eqns (18)
it is apparent that ~, = 0 and 4, = 1 correspond to movable and immovable edges at x, = 0
and /,, respectively, while 2, = 0 and 2, = 1 correspond to movable and immovable edges
at x, = 0 and /,, respectively. Partially restrained edges at x, = 0 and /, and x, = 0 and /,
implies 0 < /4, < 1 and 0 < £, < 1, respectively.

8. SOLUTION OF THE NONLINEAR EQUATIONS

The nonlinear boundary-value problem in the present study is solved using Galerkin’s
method. Considering the representation

{l SRR I)\% = 5“8"'( )}sin JomX | SIN 1, X5, (19a.b)

8] .
2N X)) { W

(where, in order to obtain a most conservative postbuckling prediction (see Seide. 1974),
the shape of geometric imperfection is similar to the one of the buckling mode) the out-of-
plane boundary conditions are identically fulfilled.

Herein 2, = mn/l,. p, = nnjl, while w,  and \(:',,,,, are the modal amplitudes. Similarly,
the applied temperature and pressure fields are most generally represented by Navier-type
double Fourier sine series. In the present study, the temperature and pressure fields are
approximated by

(0

\ %(-\‘1 LXo) T,

I | .
CT(x.Xs) = ]T,,,,, SIN £, SIN 1, X-. (20a—<)

‘p3(>\‘l"\‘2) \an)

The displacement representations (eqns 19) and expression of ¢, (eqn (6a)) are substituted
into the compatibility equation, eqn (13b), and the Airy’s stress function is obtained by
solving the resulting linear non-homogeneous partial differential equation. The remaining
nonlinear partial differential equation, eqn (13a), 1s converted into a set of nonlinear
ordinary differential equations using Galerkin's method. This procedure yields an intricate
set of M x N nonlinear ordinary differential equations expressed in symbolic form as

| 0 - . L0
AW+ R w+p. B, —TT, C +P[w. .w, . L. Los]+Pprow,]

+ P P T T =00 Y 2

where the symbol L, , indicates that there is no summation over r and s. and where r = I,
2.....Mands=1.2,.... N. Ineqn (21), P, and P,. P, and P; are linear. quadratic. and
cubic polynomials of the unknown modal amplitudes w,,. respectively. The coeflicients B,,,
C... and R, are constants that depend on the material and geometric properties of the shell
and £, (= N,/ (x*D)) and L,.( = N,.I; /(7" D)) represent the dimensionless normalized
tangential edge loads normal to the edges x, = 0. /. and x. = 0. /., respectively.

9. EQUATIONS FOR STATIC EQUILIBRIUM STATES AND SMALL VIBRATIONS

The main emphasis of the present study is the static postbuckling and vibrational
behavior of flat and curved panels that are loaded quasistatically into the pre;/postbuckling
range. To obtain equations governing the static pre postbuckling equilibrium states and
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small vibrations about these equilibrium states. the unknown modal amplitudes are ex-
pressed as

w, (1) = 0w, 4w, (1), (22)

where W,,(¢) represents small vibrations about a mean static equilibrium configuration
described by w,,. The disturbances ,, are considered small compared to both w,, and the
0

imperfection amplitude w,, in the sense of

0

[W.(D]° < W, (23)

for all values of the indices r and s. The equations for the static prebuckling and postbuckling
equilibrium states are obtained by discarding the inertia terms given by 4,4, in eqn (21).
The solution to the resulting equation is w,,. The equations for small vibrations about a
given static equilibrium state are then obtained by substituting eqn (22) into eqn (21) and
enforcing the smaliness condition given by eqn (23). The resulting equations of motion are
given by

A, (0 + G () = 0. Y. (24)
where
| L0 0 1
G, =G, 0n.v v, p T, T (25)
forvaluesof r=1.2...., Mand s = 1.2..... N. The constant coefficients A4,, are functions

of the material and geometric properties of the panel.
Equation (24) governs small vibrations about a given equilibrium state and are solved
for harmonic motion by expressing ir,.(¢) as

(1) =, expliw,1). (26)

Substitution of eqn (26) into eqn (24) yields an algebraic eigenvalue problem given by

G, = oL AW, Z (27)

ros

for values of r = 1. 2. .... M and s = 1. 2, ... . N. The frequencies w,, in eqn (27) are the
unknown quantities to be found and the corresponding amplitudes ¥, are indeterminate.

10. COMPUTATIONAL ASPECTS

In the present study. two distinct types of thermal loadings are considered. One of

0 0
them corresponds to a uniform through thickness temperature distribution 7 = T(x,,),
while the second one is associated with a linear through-the-thickness temperature variation
)

(T(x,,,) + X ]T(.\y,). These two types of thermal loadings will be referred to as TL1 and TL2,
respectively. In addition, in some instances explicitly mentioned, the panel is assumed to
be acted on also by edge and;or lateral pre-loads.

The static equilibrium configuration for a given flat or curved panel is obtained by
solving the static counterpart of the nonlinear algebraic equation system, eqns (21), via
Newton’s method. After obtaining the static equilibrium configuration of the panel for
given values of the loading parameters, the coefficients 4,, and G,, in eqns (27) are computed
and the linear algebraic eigenvalue problem is solved. In some instances, eqns (27) possess
negative eigenvalues that correspond to pure imaginary fundamental vibration frequencies.
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For the panels investigated herein, the pure imaginary fundamental frequencies correspond
to unstable branches of postbuckling equilibrium path.

Il. NUMERICAL [LLUSTRATIONS

The results presented in the present paper are for small vibrations about the static
prebuckling and postbuckling equilibrium states of simply supported flat and curved panels.
The panels considered have a square planform with dimensions /, = /, = / and consist of
either a single or three layers of elastic transversely isotropic material. In all numerical
results presented herein, the following input data characterizing the thermoelastic material
properties have been used :

vV =02, 4E=—115x10"in/in; F, 22 = 14286, and E'E =5.

For the three-layer panels one assumes that the core-layer is twice as thick as each of the
face-layers. In addition, throughout these results it was assumed that the elastic moduli and
thermal compliance coefficients are defined in terms of non-dimensional ratios as:

for the face-lavers
(E/Ey, =S5. (E/G"), =10, (4.),=14286, (. E),= —1.15x10 *in/in/ F
and for the core-layer
(E/E). =2; (E/G), =30. (4/2), =121413, (J/E). = —4.8875x 10 " in/in/ F.

[t was also postulated that E/E, = 10.

In these expressions the indices fand ¢ identify the affiliation of the respective quantities
to the face and core layer, respectively. The considered numerical data imply that the
core layer is more shear-deformable than the face layers. a behavior which is commonly
considered in sandwich type constructions.

In all the obtained results. unless stated otherwise, it was considered 4, = 1, implying
that the higher order effects have been incorporated. In addition, it was considered
invariably 9, = l. thus avoiding the contradiction implied by the simultaneous con-
sideration of s = 0 and ey, = O(.) It should also be mentioned that in the displayed results
T.. T, p.o( =w,:h), and dy( = w,,/h) stand for the amplitudes of the respective quantities
at the center (x, = /,/2, x, = [.,2) of the panel.

12. RESULTS FOR FLAT PANELS

The effects of tangential edge restraints on small vibrations about the static prebuckling
and postbuckling equilibrium state of geometrically perfect simply supported flat three
layer panels are presented in Figs 1 and 2. The panel considered in these illustrations
features movable edges at x; = 0 and x = /, and varying degrees of edge constraint at x, = 0
and x, = L. In the figures & ( = my/}w/(n" D)) defines the square of dimensionless fun-
damental frequency. Whereas Fig. 1 depicts the frequency-temperature interaction for the
case of a uniform through thickness temperature rise, Fig. 2 corresponds to the case of
panels subjected to a thickness-wise temperature g:rddlent

In the former case, bucklmg occurs for those T( = T ,) (indicated by the filled circles
in the figure) rendering @ — 0. Consistent with the features already discussed in Librescu
et al. (1994b, 1995). Fig. | reveals that with the increase of the degree of restraint of edges
X, =0, /.. the buckling temperature decreases. Moreover. Fig. 1 shows also that, in the
prebuckling range, the increase of 4, results in the decrease of natural frequencies, whereas
in the postbuckling range the opposite trend becomes apparent. In the case of the TL2 type
loading, since the panels begin deflecting at the onset of the thermal rise, tensile stresses are
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Fig. 2. The counterpart of Fig. 1 for TL2 type loading. 7, = 70°F. 2, = 0,

generated resulting in the stiffening of the panel. This explains the steep increase of
eigenfrequencies with 7T, following a slight decrease of them.

In this case, as Fig. 2 reveals, in contrast to the case corresponding to Fig. 1, in addition
to the fact that the eigenfrequencies cannot become zero-valued (implying that the panel
does not experience buckling bifurcation), the increase of the fundamental frequencies
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TL2 (T, = 70°F). L), = 0. 3, = 0). The curved edges are movable {~, = 0). The static postbuckling
counterpart is displayed in the inset.

starts at much smaller values of the temperature rise. To facilitate understanding, in both
figures their static counterpart is displayed as a small inset.

13. RESULTS FOR CURVED PANELS

The effects of tangential edge restraints on the frequency—temperature interaction are
presented, for the case of cylindrical panels, in Figs 3 and 4.

The results in these figures are obtained for geometrically perfect circular cylindrical
panels (/. R, = 0.1) subjected to the TL2 type loadings. Their straight edges are considered
to feature various degrees of tangential constraints. implying that at these edges 0 < 2, < 1,
whereas the curved edges feature (see Figs 3 and 4) movable (4, = 0) and immovable
(4, = 1) edge constraints. respectively.

The results emerging from these graphs reveal that corresponding to 4, = 0 and 1, for
4> = 0.32and 4, = 0.37 the respective panels exhibit buckling bifurcation while for 4, < 0.32
and 4, < 0.37, limit temperature loads are experienced, respectively.

The response curves indicate that for degrees of the tangential constraints of straight
edges lower or equal with the ones resulting in the bouckling bifurcation, the fundamental
frequency decreases monotonically with increasing 7 in the prebuckling/prelimit ranges,
whereas for larger degrees of the edge constraint, a monotonous increase in the fundamental
frequency is experienced. o

At buckling/collapse points the further increase of T results in a jump on the stable
path corresponding to real values of fundamental frequency. The insets in the Figs 3 and
4 depicting the static postbuckling counterparts aim to provide a more comprehensive
understanding of the effects played by the tangential edge constraints.

Figure 5 represents the counterpart of Fig. 3 obtained for the case of the uniform
temperature distribution through the wall thickness (i.e.. of the TL1 type loading). The
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Fig. 5. The counterpart of the case considered in Fig. 3 for the TL1 type loading.

results associated with this case reveal that with the temperature rise, a continuous increase
of natural frequencies is obtained. They also show that the increase of the degree of restraint
of straight edges yields a significant increase of natural frequencies. The static counterpart
of this case, appearing as an inset. adds to the understanding of the response behavior.
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The effect of an uniaxially sub-critical compressive edge preload held fixed is presented
in Fig. 6. Compared to its counterpart associated with L, = 0 (Fig. 3). it becomes apparent
that it contributes to the decrease of both the thermal buckling load and natural frequencies.
However, in the post-buckling/prelimit regimes the increase of natural frequencies is stron-
ger than in the case of the unloaded edge counterpart. Moreover, in contrast to the case of
the unloaded edges (Fig. 3). in the present one. the cylindrical panel featuring movable
straight edges experiences snap-through buckling.

The effect of initial geometric imperfection is illustrated in Fig. 7. As compared to the
geometrically perfect panel counterpart, Fig. 3. in this case, the results reveal that larger
degrees of tangential edge restraint are needed to yield the thermal buckling bifurcation.
This implies that in this case there is a more limited interval of degrees of edge constraints
for which the imperfection—sensitivity behavior featured by the curved panel can be changed
in an imperfection—insensitivity one.

In Fig. 8. the case of a very shallow and geometrically imperfect circular cylindrical
panel compressed by the sub-critical pre-load ., is considered. It is assumed that the panel
features movable straight edges and various degrees of restraint of the curved edges. In this
case it is seen that the panel does not experience buckling bifurcation and that with the
increase of tangential constraints of curved edges. a delay of the occurrence of the snap-
through, in the sense of Birman and Bert, 1993. is occurring. This delayed snap-through
buckling has, however. to be payed by the increase of the intensity of the snap-through, a
trend which is valid in both the dynamic and static situations (see the inset). Moreover, the
results reveal that in contrast to the trend in Figs 3-7. in this case there is no benign
postbuckling behavior in the sense of 4 monotonous increase of the deflection/frequencies
with the rise of the temperature. Based on the results obtained recently (see the paper by
Librescu et al., 1994), a similar trend can be obtained : for example, when associated with
the configuration in Fig. 7, larger initial geometric imperfections are involved.

In Fig. 9 the effect of the degree of restraint of straight edges on the frequency-
temperature interaction of geometrically perfect circular cylindrical panel is highlighted.
The panel is subjected to the pre-loads consisting of the uniaxial pre-critical compression
L), and a lateral pressure of amplitude p( = p,/} (Dh) where p, = p,,). Herein the curved
edges are considered perfectly movable.
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Similarly to the previously investigated cases. also for a laterally loaded panel. con-
sistent with its overall geometric and mechanical characteristics, there is a special degree of
the tangential constraint of the straight edges yielding the thermal buckling-bifurcation. It
may also be seen that the non-linear response featured in this case follows, qualitatively,
the trend emerging, e.g.. in the case of Fig. 6 above.
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of geometrically circular cylindrical panels subjected to combined mechanical pre-loads (/, R, = 0.

IRy =0.15.TL2(T, =70 ). L,, = 3. p = 2.5. 5, = 0). The curved edges are assumed to be movable
() = 0).

Figure 10 displays the frequency-lateral pressure interaction of geometrically perfect
spherical caps exposed to the TL2 type loading characterized by the temperature of ampli-
tudes 7, =70 F and 7, = 1000 F held fixed. The results reveal that the various com-
binations of tangential edge constraints can result either in lower eigenfrequencies in the
pre/post-hmit ranges (but featuring a milder snap-through). or in large eigenfrequencies in
both ranges (but featuring a more severe snap-through behavior). It should be noticed in
this respect the qualitative similarity of the non-linear response emerging in this case. with
that occurring in the conditions pertinent to Fig. §.

In Fig. 11 the frequency-temperature interaction for the case of a single-layered circular
cylindrical panel is displayed. It is supposed that the panel is subjected to the axial pre-load
L, (=350%L.). that the straight edges can be movable or immovable and that the curved
edges are invariably movable. The results reveal that the combination of edge constraints
{2, =0, 2> = 1) is less beneficial than that implying (~, = 0, 2, = 0), in the sense that in the
former case a snap-through buckling can appear whereas in the latter one, a monotonous
increase of the eigenfrequencies with the temperature rise i1s experienced. This conclusion
remains valid within both the classical (£/G" = 0) and shear deformable (£/G" = 30) shell
models.

The same graph reveals that, as compared to the actual panel featuring transverse
shear flexibility, the classical shell theory results in the overestimation of natural frequencies
in the pre-limit loading range and in their underestimation in the post-limit one. Moreover,
in contrast to the shear deformable shell model. the classical theory inadvertently predicts
the impossibility of occurrence of the snap-buckling. Last but not least, the results of
this graph reveal that associated with the FSDT. the shear correction K° = 5/6 provides
predictions in closest agreement with those based on HSDT. However. previous results
reveal (see Librescu et al.. 1993b.c. 1994, 1995) that for a laminated panel K* = 2/3 is a
more reliable shear coefficient.

14. CONCLUSIONS AND DISCUSSION

The frequency—temperature interaction and the influence exerted thereof by the tan-
gential edge constraints of flat/curved panels was examined. The effects played by the
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edges are assumed to be movable (4, = 0). Predictions based on the FSDT with K* = 5/6 coincide
with those based on the HSDT.

compressive/lateral pre-loads as well as by initial geometric imperfection are also
considered. The temperature field T = T(x,,. x;) used in the analysis is considered either
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uniform through the wall thickness (i.e., T — T(x,)) or is assumed to be the result of the
0
superlposition of a uniform and a thickness-wise temperature gradient (i.e., T T(x,)

+x;T(x,)). Throughout this paper simply-supported flat and curved panels of a square
projection on the plane P are considered. It was shown that the degree of tangential edge
restraint can, in general, to significantly enhance the static/dynamic response, and. in
particular, to delay the occurrence of the snap-through buckling, remove completely this
damaging phenomenon by rendering the postbuckling behavior a benign one and to render,
in some cases, a curved panel insensitive to initial geometric imperfections.

It should be noted that the trend revealed in a number of plots (e.g., Figs 3, 4) is
similar to the one experienced by a structure featuring asymmetric buckling bifurcation in the
sense of Budiansky and Hutchinson (1966). Hutchinson and Koiter (1970) and Budiansky
(1974).

For the present case, the “perfect’ structure considered in these works corresponds to
the one featuring a degree of edge constraint (denoted, for convenience, as 4y) resulting in
the buckling bifurcation.

The positive(negative) imperfections resulting in a detrimental (benign) postbuckling
behavior. will correspond in this case to the degrees of edge restraints 2 < A,(4 > Z4).
Based on the obtained results one can conclude that the type of asymmetric buckling
bifurcation can occur in any curved structure featuring tangential edge constraints.

Moreover, one can design such a structure featuring asymmetric buckling bifurcation
and get for £ > /, a benign postbuckling and vibrational behavior. It should be mentioned
in passing that such situations are likely to occur also in the case. e.g., of the postbuckling
of a non-symmetrically laminated panels (Carerra, 1992, and Vinogradov and Dwyer,
1994). For such a case, the degree of bending-stretching coupling induced by the structural
non-symmetry should play a similar role to the degree of tangential edge constraint.

It 1s hoped that this work will contribute to a better understanding and design of flat
and curved panels exposed to complex thermomechanical loads and featuring tangential
edge constraints and initial geometric imperfections.
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APPENDIX

The stiffness quantities associated with a transversely-isotropic symmetrically laminated composite panel
appearing in eqns (13a—).
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